1.笔记本复合材质是什么?有什么特点?

2.我想做塑料粉碎生意, 1粉碎塑料瓶应该买什么样的机器?

3.abs塑料是食品级的吗

4.如何解聚回收聚酯材料

笔记本复合材质是什么?有什么特点?

再生塑料合金价格走势_再生塑料合金价格

以下这些材料。

一、ABS工程塑料

ABS工程塑料即PC+ABS(工程塑料合金),在化工业的中文名字叫塑料合金,之所以命名为PC+ABS,是因为这种材料既具有PC树脂的优良耐热耐候性、尺寸稳定性和耐冲击性能,又具有ABS树脂优良的加工流动性。同时其具备极好的冲击强度,电性能、耐磨性、抗化学药品性、染色性以及成型加工和机械加工较好。

这是一种最普通的笔记本外壳材料,目前市场上大部分机型都或多或少的采用了这种材料。例如:ThinkPad E40系列、宏碁4741G系列等等,都是采用的这种材料,举不胜举。

优点:成本较低、易于加工、尺寸稳定性好。

缺点:质量较重、散热性不佳。

二、铝镁合金

铝镁合金一般主要元素是铝,再掺入少量的镁或是其它的金属材料来加强其硬度。因本身就是金属,其导热性能和强度尤为突出。

一般来说,其硬度是ABS工程塑料机壳的数倍,但重量仅为后者的三分之一,通常被用于中高档超薄型或尺寸较小的笔记本的外壳。

银白色的铝镁合金外壳可使产品更豪华、美观,而且易于上色,可以通过表面处理工艺变成个性化的粉蓝色和粉红色,为笔记本电脑增色不少,这是工程塑料以及碳纤维所无法比拟的。因而铝镁合金成了便携型笔记本电脑的首选外壳材料,目前大部分厂商的笔记本电脑产品均采用了铝镁合金外壳技术。铝镁合金并不是很坚固耐磨,成本较高,比较昂贵,而且成型比ABS困难(需要用冲压或者压铸工艺),所以笔记本电脑一般只把铝镁合金使用在顶盖上,很少有机型用铝镁合金来制造整个机壳。

优点:强度高、质量轻、散热好。

缺点:成本较高、喷漆容易磨损。

三、碳纤维

碳纤维材质是很有趣的一种材质,它既拥有铝镁合金高雅坚固的特性,又有ABS工程塑料的高可塑性。它的外观类似塑料,但是强度和导热能力优于普通的ABS塑料,而且碳纤维是一种导电材质,可以起到类似金属的屏蔽作用(ABS外壳需要另外镀一层金属膜来屏蔽)。

碳纤维的强韧性是铝镁合金的两倍,而且散热效果最好。碳纤维的缺点是成本较高,成型没有ABS外壳容易,因此碳纤维机壳的形状一般都比较简单缺乏变化,着色也比较难。此外,碳纤维机壳还有一个缺点,就是如果接地不好,会有轻微的漏电感,需要在其碳纤维机壳上覆盖了一层绝缘涂层。

优点:散热好、强韧性好。

缺点:成本高、成型难、导电。

四、钛合金

钛合金材质的可以说是铝镁合金的加强版,它的主要成分也是金属铝。钛合金与铝镁合金除了掺入金属本身的不同外,最大的分别之处,就是还渗入碳纤维材料,无论散热,强度还是表面质感都优于铝镁合金材质,而且加工性能更好,外形比铝镁合金更加的复杂多变。

钛合金关键性的突破是强韧性更强、而且变得更薄。就强韧性看,钛合金是铝镁合金的三至四倍。强韧性越高,能承受的压力就越大。至于薄度,钛合金厚度只有0.5mm,是镁合金的一半,厚度减半可以让笔记本电脑体积更娇小轻薄。

钛合金唯一的缺点就是必须通过焊接等复杂的加工程序,才能做出结构复杂的笔记本电脑外壳,这些生产过程衍生出可观成本,因此十分昂贵。目前,钛合金及其它钛复合材料。

优点:集以上所有材质优点于一身。

缺点:复杂的加工程序使价格高昂。

五、聚碳酸酯PC(PC-GF-##)

聚碳酸酯PC也是笔记本电脑外壳所采用的材料之一,它的原料是石油,经聚酯切片工厂加工后就成了聚酯切片颗粒物,再经塑料厂加工就成了成品。从实用的角度,其散热性能也比ABS塑料较好,热量分散比较均匀。

其最大缺点是比较脆,容易断裂,我们常见的光盘就是用这种材料制成的。运用这种材料比较显著的就是富士通了,在很多型号中都是用这种材料,而且是全外壳都采用这种材料。

不管从表面还是从触摸的感觉上,PC-GF-##材料感觉都像是金属。如果笔记本电脑内没有标识的话,单从外表面看不仔细去观察,可能会以为是合金物。

优点:散热性能好。

缺点:比较脆。

六、皮革:

早期人们比较重视笔记本的硬件性能,外壳也是提升笔记本性能的一个重要途径。不过,随着今年来技术水平的大大提高,人们逐渐开始考虑笔记本的外观设计,所以加入皮革材质的笔记本电脑应运而生,皮革不仅在外观上给人以高贵的时尚感,同时还会给用户提供更佳的操作使用体验。

率先将皮革材质引入笔记本外壳设计的是华硕,2006年推出的S6皮革版是全球首款采用皮革外壳的笔记本产品。皮革本身的特点是柔软附有弹性,所以可以根据笔记本不同的外观附着不同的皮革,并且手感非常出色,而且染色工艺也比较成熟,不过大家都知道,皮革本身是非常软的,所以它不能单独用作笔记本的外壳,必须是附着在某种坚硬的材质表面才可以,否则是不足以对内部的原件起到保护作用的。

另外,大家都知道,皮革比较保暖,所以散热性能比较差,因此,采用皮革外壳的笔记本数量很少,针对的是时尚人群。

优点:时尚、柔软、手感好。

缺点:散热性能差,价格高。

七、竹子

竹子,在生活中经常见到,竹制筷子、竹制椅子等等。但将竹子作为笔记本电脑的外壳材料却非常少见,07年华硕推出了一款EcoBook采用的就是竹制外壳。

竹制笔记本以华硕为代表

竹子本身比较坚固耐用,具有一定的柔韧性,而且质地较轻,非常适合用作笔记本外壳。在对竹材的处理过程中使用了烟熏、蒸煮等工艺,将竹子中的醣份去除,同时在竹材的表面涂上透明的漆料,这样做可以有效提升竹材的防虫蛀、防潮、抗磨损以及防褪色的能力。竹子是一种有机材质,是可再生资源,用竹子作为笔记本电脑的外壳材料,最大的意义还是在于环保。

不过,将竹子作为笔记本外壳的材料,在制作加工方面有着非常大的难度。因为笔记本考虑到体积、重量以及散热的因素,因此竹子要加工的足够薄,还必须具有一定的坚固性,同时烟熏、蒸煮、雕刻等工艺也非常麻烦,这导致其价格很昂贵,并且难以进行量产。

优点:时尚个性、轻薄、环保。

缺点:加工难度大。

对于笔记本外壳材料的选择建议

对于目前的笔记本市场来说,还是以ABS工程塑料作为外壳的笔记本电脑为主。因为硬件、软件技术发展迅速,同时人们的生活水平得到很大提高,这导致笔记本已逐渐成为一种消费品,一般一台笔记本用4到5年已经是极限,而这段时间的应用ABS工程塑料已足以应付,所以其凭借低成本、高性价比吸引了众多厂商和低端消费者的目光。

而对于预算比较多的朋友来说,外壳采用铝镁合金、碳纤维或钛合金材料的笔记本无疑是更为理想的选择对象。其中,铝镁合金比较容易上色,能拥有彩色的外壳,更适合家用。而对于另外两种材料来说,上色比较困难,所以严谨单一的色调成为它们主要的表现形式,所以比较适合商务人士选择。

市售主流笔记本外壳大部分为ABS工程塑料

那么,就会有朋友问了,如果在购买笔记本的时候,说明中没有明确标注是什么材料,我们要如何分辨呢?

其实,很简单。一般利用“摸”和“敲”就可以分辨出来,合金材料摸上去是比较冰凉、用手指或钥匙等金属轻轻敲击时会发出较为清脆的声音,而ABS工程塑料摸上去则没有冰凉的感觉,敲击时发出的声音也比较傲顿。当然,这其中有一个例外,那就是碳纤维,因为碳纤维看起来、摸上去都和塑料差不多,所以比较容易和ABS工程塑料混淆。不过,幸好以碳纤维材料作为笔记本外壳的机型并不多,所以,我们记住目前常见的几款碳纤维本子就好了。包括:索尼的TZ/SZ/G等便携商务系列,华硕W1以及联想天逸F31等(不过目前八千元以下的F31已经换用普通塑料材质了)。而钛合金的识别也比较简单,因为它是ThinkPad T/X系列笔记本的“御用”材料。

我想做塑料粉碎生意, 1粉碎塑料瓶应该买什么样的机器?

EPS泡沫聚苯乙烯

PA聚酰胺

PET 聚对苯二甲酸乙二酯.

PE是聚乙烯.

PVC是聚氯乙烯.

PP是聚丙烯.

ABS是丙烯腈,丁二烯,苯乙烯三者的共聚物。

①聚氯乙烯(PVC) 它是建筑中用量最大的一种塑料。硬质聚氯乙烯的密度为1.38~1.43g/cm3,机械强度高,化学稳定性好 ②聚乙烯(PE) ③聚丙烯(PP) 聚丙烯的密度在所有塑料中是最小的,约为0.90左右。 聚丙烯常用来生产管材、卫生洁具等建筑制品。 ④聚苯乙烯(PS) 聚苯乙烯为无色透明类似玻璃的塑料。 ⑤ABS塑料 ABS塑料是改性聚苯乙烯塑料,以丙烯睛(A)、丁二烯(B)及苯乙烯(S) 为基础的三组分所组成。

PS:聚苯乙稀

是一种无色透明的塑料材料。具有高于100摄氏度的玻璃转化温度,因此经常被用来制作各种需要承受开水的温度的一次性容器,以及一次性泡沫饭盒等。

PP:聚丙烯

是一种半结晶的热塑性塑料。具有较高的耐冲击性,机械性质强韧,抗多种有机溶剂和酸碱腐蚀。在工业界有广泛的应用,是平常常见的高分子材料之一。澳大利亚的钱币也使用聚丙烯制作。

PE:聚乙烯

是日常生活中最常用的高分子材料之一,大量用于制造塑料袋,塑料薄膜,牛奶桶的产品。

聚乙烯抗多种有机溶剂,抗多种酸碱腐蚀,但是不抗氧化性酸,例如硝酸。在氧化性环境中聚乙烯会被氧化。

聚乙烯在薄膜状态下可以被认为是透明的,但是在块状存在的时候由于其内部存在大量的晶体,会发生强烈的光散射而不透明。聚乙烯结晶的程度受到其枝链的个数的影响,枝链越多,越难以结晶。聚乙烯的晶体融化温度也受到枝链个数的影响,分布于从90摄氏度到130摄氏度的范围,枝链越多融化温度越低。聚乙烯单晶通常可以通过把高密度聚乙烯在130摄氏度以上的环境中溶于二甲苯中制备。

结构式:- CH2 - CH2 - CH2 - CH2 - CH2 - CH2 - CH2 - CH2

ABS:是丙烯腈、丁二烯、苯乙烯的合成塑料

丙烯腈、丁二烯、苯乙烯三种单体的接枝共聚合产物,取它们英文名的第一个字母命名。它是一种强度高、韧性好、综合性能优良的树脂,用途广泛,常用作工程塑料。工业上多以聚丁二烯胶乳或苯乙烯含量低的丁苯橡胶为主链,与丙烯腈、苯乙烯两种单体的混合物接枝共聚合制得。实际上它往往是含丁二烯的接枝聚合物与丙烯腈-苯乙烯共聚物SAN(或称 AS)的混合物。近年来也有先用苯乙烯、丙烯腈两种单体共聚,然后再与接枝共聚的ABS树脂以不同比例混合,以制得适应不同用途的各种 ABS树脂。20世纪50年代中期已开始在美国工业化生产。

工业生产方法 可分两大类:一类是将聚丁二烯或丁苯橡胶与SAN树脂在辊筒上进行机械共混,或将两种胶乳共混,再共聚;另一类是在聚丁二烯或苯乙烯含量低的丁苯胶乳中加入苯乙烯和丙烯腈单体进行乳液接枝共聚,或再与SAN树脂以不同比例混合使用。

结构、性质和应用 在ABS树脂中,橡胶颗粒呈分散相,分散于SAN树脂连续相中。当受冲击时,交联的橡胶颗粒承受并吸收这种能量,使应力分散,从而阻止裂口发展,以此提高抗撕性能。

接枝共聚合的目的在于改进橡胶粒表面与树脂相的兼容性和粘合力。这与游离 SAN树脂的多少和接枝在橡胶主链上的 SAN树脂组成有关。这两种树脂中丙烯腈含量之差不宜太大,否则兼容性不好,会导致橡胶与树脂界面的龟裂。

ABS树脂可用注塑、挤出、真空、吹塑及辊压等成型法加工为塑料,还可用机械、粘合、涂层、真空蒸着等法进行二次加工。由于其综合性能优良,用途比较广泛,主要用作工程材料,也可用于家庭生活用具。由于其耐油和耐酸、碱、盐及化学试剂等性能良好,并具有可电镀性,镀上金属层后有光泽好、比重轻、价格低等优点,可用来代替某些金属。还可合成自熄型和耐热型等许多品种,以适应各种用途。

PET:聚对苯二甲酸乙二醇酯

对苯二甲酸与乙二醇的聚合物。英文缩写为PET,主要用于制造聚对苯二甲酸乙二酯纤维(中国商品名为涤纶)。这种纤维强度高,其织物穿著性能良好,目前是合成纤维中产量最高的一个品种,1980年世界产量约510万吨,占世界合成纤维总产量的49%

性质 分子结构的高度对称性和对亚苯基链的刚性,使此聚合物具有高结晶度、高熔融温度和不溶于一般有机溶剂的特点,熔融温度为257~265℃;它的密度随着结晶度的增加而增加,非晶态的密度为1.33克/厘米^3,拉伸后由于提高了结晶度,纤维的密度为1.38~1.41克/厘米^3,从X射线研究,计算出完整结晶体的密度为1.463克/厘米^3。非晶态聚合物的玻璃化温度为67℃;结晶聚合物为81℃。聚合物的熔化热为 113~122焦/克,比热容为1.1~1.4焦/(克.开),介电常数为 3.0~3.8,比电阻为10^11 10^14欧.厘米。PET不溶于普通溶剂,只溶于某些腐蚀性较强的有机溶剂如苯酚、邻氯苯酚、间甲酚、三氟乙酸的混合溶剂,PET纤维对弱酸、弱碱稳定。

应用 主要做合成纤维的原料。短纤维可与棉花、羊毛、麻混纺,制成服装用纺织品或室内装饰用布;长丝可做服装用丝或工业用丝,如用于滤布、轮胎帘子线、降落伞、输送带、安全带等。薄膜可作片基,用于感光胶片、录音磁带。注射模塑件可做包装容器。

PVC:聚氯乙烯

是一种使用一个氯原子取代聚乙烯中的一个氢原子的高分子材料。

聚氯乙烯的最大特点是阻燃,因此被广泛用于防火应用。但是聚氯乙烯在燃烧过程中会释放出盐酸和其他有毒气体。

结构式:- CH2 - CHCl - CH2 - CHCl - CH2 - CHCl -

POM:聚甲醛

学名为聚氧亚甲基,是一种热塑性结晶聚合物。英文缩写为POM。结构式为 CH —O ,1942年以前,甲醛聚合得到的多半是聚合度不高、容易受热解聚的聚氧亚甲基二醇HO CH O H,其中 =8~100 的为多聚甲醛; 超过100的为 -聚甲醛,1955年前后,美国杜邦公司由甲醛聚合得到甲醛均聚物,即均聚甲醛,商品名为Delrin。美国塞拉尼斯公司由三聚甲醛出发,制得与少量二氧五环或环氧乙烷的共聚物,即共聚甲醛,商品名为Celcon。

性质 聚甲醛很容易结晶,结晶度达70%;通过高温退火,可增加结晶度。均聚甲醛的熔融温度为 181℃,密度为1.425克/厘米 。共聚甲醛的熔点为 170℃左右。均聚甲醛的玻璃化温度为-60℃。酚类化合物是聚甲醛的最佳溶剂。从熔融指数的研究得知,均聚甲醛的分子量分布较窄。除强酸、氧化剂和苯酚外,共聚甲醛对其他化学试剂很稳定,而均聚甲醛还对浓氨水不稳定。经稳定处理的聚甲醛可加热到 230℃仍无显著分解。聚甲醛可用压缩、注射、挤出、吹塑等方法成型,加工温度为170~200℃;也可用机床加工,还可焊接。制品质轻,坚硬,有刚性和弹性,尺寸稳定,摩擦系数小,吸水率低,绝缘性能良好,又耐有机溶剂;可在广泛的温度范围(-50~105℃)和湿度范围内使用;在各种

技术部;冯振兴

2010年4月2号

塑料的认识

ABS是本公司最常见的一种塑料此塑料的原料的本色为米**;最常见的产品有电视机的前框;固定显像管的四角的转角等‘;此塑料的特性为柔韧度;刚性非常好;此料最大的特性就是可以电镀。

识别办法第一;肉眼识别法主要看产品的内侧是否是米**的如果是的话就可以断定是ABS料ABS料外观比较光滑

识别办法二;物理测试法在相似的颜色和产品中识别ABS要比其他相似料要硬柔韧度要高于其他的相似料特别脆弱的可能就不是ABS料为什么说可能;因为有的产品年月较长经过长时间的风化可减化产品的有机物;在十年以上的产品这种办法是不好判断的 。

识别办法三;火苗识别法ABS在燃烧的时候烟雾很浓火苗发红被燃掉的部分为焦的状态

废塑料回收乃是一个系统工程,要分清各种废塑料,恐怕还得去购买些关于高分子材料类书籍!雅之江在这里作一些简单的介绍,看看对你是否有所帮助。塑料的具体分类很多,就高分子材料而言,恐怕不是三言两语就能囊括的,但就塑料而言,可从以下几种分类法:热固性塑料与热塑性塑料热固性塑料的定义:高分子树脂通过加热塑化或引入助剂塑化,经冷却固化定型后不能再次通过热塑成型的物质,如酚醛塑料,脲醛塑料,191树脂钢化塑料等。即热固性塑料不能再次回收造粒。热塑性塑料的定义:高分子树脂通过加热塑化,通过冷却定型后,可以再次根据需要二次加热塑化成型,周而复始。塑料回收造粒指的就是这类塑料。进一步分类热塑性塑料又可分为常规热塑性通过用塑料和工程塑料,常用热塑性通用塑料有聚乙烯(PE)聚丙烯(PP)聚氯乙烯(PVC)聚苯乙烯(PS)等等,工程塑料有丙烯晴-丁二烯-苯乙烯(ABS)高抗冲击性聚苯乙烯(AS)或(HIPS)。简易的塑料鉴别,可用如下几种方法:直观鉴别法是指用人的感观去体验塑料的一些直观特征。眼看用外观:透明?半透明?不透明?颜色(未染色时)如何?放到水里,漂浮?下沉?用鼻闻:有无气味?什么气味?用手摸:光滑还是粗糙?感觉冷还是热?用手指甲划一下,有无痕迹?用手拉伸一下,是硬还是软?有无韧性和弹性?将塑料摔一摔,耳听其音声,响亮?清脆?或是低沉?易碎?或是坚韧?通过这些感官检查,可鉴别是哪种塑料。(PE)聚乙烯 LDPE的原材料为白色蜡状物,透明;HDPE为白色粉末状或白色半透明颗粒状树脂。在水中漂浮,无臭无味,具有蜡样光滑感,划后有痕迹,膜软可拉伸。LDPE柔软,有延伸性,可弯曲,但容易折断;MDPE、HDPE较坚硬,刚性及韧性较好,音低沉

(PP)聚丙烯原材料白色蜡状、半透明,在水中漂浮,无臭无味,手感光滑,划后无痕迹,可弯曲,不易折断,拉伸强度与刚性较好,音响亮(PS)聚苯乙烯 标准型玻璃般透明;耐冲击无光泽,在水中下沉,无臭无味,手感光滑,性脆,易折断 用指甲弹打有金属声,俗称“响胶”

ABS乳白色或米**,非晶态,不透明,无光泽,在水中下沉无臭无味,质材坚韧、质硬,刚性好。不易折断,音清脆

(PVC)聚氯乙烯制品视增塑与填料情况而异,有的不透明。在水中下沉,随品种而异硬制品加热到50℃时就软,且可弯曲;软制品会下垂,有的还有弹性,硬制品如门窗,下水道管等,

PA-6

PA-66聚酰胺(尼龙)原材料乳白色,如胶质。加热到250℃以上时成水饴状。在水中下沉 无臭无味 表面硬有热感,轻轻锤打时不会折断,音低沉

PMMA聚甲基丙烯酸甲酯(有机玻璃),玻璃般透明,外观美。在水中下沉,无臭无味,加热到120℃时可自由弯曲,可手工加工,坚硬,不易碎 用手指弹打有钝重声

PTEE白色蜡状,透明度较低,光滑,不燃,不吸水,耐候性极佳。在水中下沉,无臭无味,有润滑感,音低沉

PU有泡沫、弹性体、涂料、合成革及粘合剂等五种形态,形态各异,在水中有的下沉,有的漂浮。无臭无味,随形态不同而异,音低沉(PC)聚碳酸脂原材料为白色结晶粉末,浅**至琥珀色,透明固体,制品接近无色。为高级绝缘材料,无臭无味,有金属感,较硬,弯曲时的抵抗力大,耐冲击,韧性强,音较响燃烧鉴别法可剪取一小块塑料试样,用镊子夹住,放在点燃的酒精灯或打火机上燃烧,仔细观察其燃烧的难易程度,离开火源后是继续燃烧还是立即熄灭,火焰的颜色,冒烟情况,燃烧中和燃烧后塑料有什么状态变化,燃烧时有什么气味等。根据塑料燃烧特点,确定其种类。热塑性塑料燃烧时发软、熔融,以至焦化;热固性塑料燃烧时变脆、发焦,但不软化。含氯、磷、氟和硅元素的塑料不易燃烧并具有自熄性,含硫和硝基的塑料极易燃烧,有的塑料燃烧时冒黑烟,有的塑料燃烧时会分解并产生特殊气味……这些燃烧时的现象,都可以作为鉴别塑料、区分品种的依据。塑料名称 燃烧难易 离火后情况 火焰特征 塑料状态变化 气味

PE能燃 继续燃烧 明亮, 底部蓝色,上端** 熔融滴落后继续燃烧,无烟熔融滴落 蜡烛吹熄气味

PP 上端黄,下端蓝,少量黑烟 发软,起泡 石油气味辛辣味

PS易燃 明亮,橙**,浓黑烟,起炱 熔化,起泡,稍发焦 芳香气味(苯乙烯单体气味)

ABS **焰,明亮,黑烟 软化,熔融,烧焦,无滴落 带橡胶味

PA(聚酰胺) 缓慢燃烧 缓慢熄灭 黄橙色,边缘蓝色 熔融,滴落,起泡 似烧羊毛、指甲的特殊气味

PC **,明亮,起炱 软化,熔融,起泡,焦化 花果臭味

PVC难燃 离火即熄 黄橙色,边缘绿色,冒白烟,并喷浅绿色和**火焰 软化,能拉丝 有刺激性氯化氢味

UF 自熄 **,顶端浅蓝色 膨胀,开裂,变白色,焦化 甲醛气味,氨味

MF 浅**,边缘发白 膨胀,开裂,变白色,焦化 甲醛气味,浅腥味

PF 发光,**火花 裂纹,变深色 苯酚与甲醛味

PF(木粉) 缓慢燃烧 **,黑烟 膨胀,开裂 木材和苯酚味

CP是一种无定型、无臭、无※、高度透明的无色或微**热塑性工程塑料,具有优良的物理机械性能,尤其是耐冲击性优异,拉伸强度、弯曲强度、压缩强度高;蠕变性小,尺寸稳定;具有良好的耐热性和耐低温性,在较宽的温度范围内具有稳定的力学性能,尺寸稳定性,电性能和阻燃性,可在 -60~120℃下长期使用;无明显熔点,在 220-230℃呈熔融状态;由于分子链刚性大,树脂熔体粘度大;吸水率小,收缩率小,尺寸精度高,尺寸稳定性好,薄膜透气性小;属自熄性材料;对光稳定,但不耐紫外光,耐候性好;耐油、耐酸、不耐强碱、氧化性酸及胺、酮类,溶于氯化烃类和芳香族溶剂,长期在水中易引起水解和开裂,缺点是因抗疲劳强度差,容易产生应力开裂,抗溶剂性差,耐磨性欠佳。PC可注塑、挤出、模压、吹塑、热成型、印刷、粘接、涂覆和机加工,最重要的加工方法是注塑。成型之前必须预干燥,水分含量应低于0.02%,微量水份在高温下加工会使制品产生白浊色泽,银丝和气泡,PC在室温下具有相当大的强迫高弹形变能力。冲击韧性高,因此可进行冷压,冷拉,冷辊压等冷成型加工。挤出用PC分子量应大于3万,要采用渐变压缩型螺杆,长径比1:18~24,压缩比1:2.5,可采用挤出吹塑,注-吹、注-拉-吹法成型高质量,高透明瓶子。PC合金种类繁多,改进PC熔体粘度大(加工性)和制品易应力开裂等缺陷, PC与不同聚合物形成合金或共混物,提高材料性能。具体有PC/ABS合金,PC/ASA合金、 PC/PBT合金、PC/PET合金、PC/PET/弹性体共混物、PC/MBS共混物、PC/PTFE合金、PC/PA合金等,利有两种材料性能优点,并降低成本,如PC/ABS合金中,PC主要贡献高耐热性,较好的韧性和冲击强度,高强度、阻燃性, ABS则能改进可成型性,表观质量,降低密度。PC的三大应用领域是玻璃装配业、汽车工业和电子、电器工业,其次还有工业机械零件、光盘、包装、计算机等办公室设备、医疗及保健、薄膜、休闲和防护器材等。PC可用作门窗玻璃,PC层压板广泛用于银行、使馆、拘留所和公共场所的防护窗,用于飞机舱罩,照明设备、工业安全档板和防弹玻璃。 PC板可做各种标牌,如汽油泵表盘、汽车仪表板、货栈及露天商业标牌、点式滑动指示器, PC树脂用于汽车照相系统,仪表盘系统和内装饰系统,用作前灯罩,带加强筋汽车前后档板,反光镜框,门框套、操作杆护套、阻流板、PC被应用用作接线盒、插座、插头及套管、垫片、电视转换装置,电话线路支架下通讯电缆的连接件,电闸盒、电话总机、配电盘元件,继电器外壳, PC可做低载荷零件,用于家用电器马达、真空吸尘器,洗头器、咖啡机、烤面包机、动力工具的手柄,各种齿轮、蜗轮、轴套、导规、冰箱内搁架。PC是光盘储存介质理想的材料。PC瓶(容器)透明、重量轻、抗冲性好,耐一定的高温和腐蚀溶液洗涤,作为可回收利用瓶(容器)。

废旧塑料通常以填埋或焚烧的方式处理。焚烧会产生大量有毒气体造成二次污染。填埋会占用较大空间;塑料自然降解需要百年以上;析出添加剂污染土壤和地下水等。因此,废塑料处理技术的发展趋势是回收利用,但目前废塑料的回收和再生利用率低。究其原因,有管理、政策、回收环节方面的问题,但更重要的是回收利用技术还不够完善。

废旧塑料回收利用技术多种多样,有可回收多种塑料的技术,也有专门回收单一树脂的技术。近年来,塑料回收利用技术取得了许多可喜的进展,本文主要针对较通用的技术做一总结。

1 分离分选技术

废旧塑料回收利用的关键环节之一是废弃塑料的收集和预处理。尤其我国,造成回收率低的重要原因是垃圾分类收集程度很低。由于不同树脂的熔点、软化点相差较大,为使废塑料得到更好的再生利用,最好分类处理单一品种的树脂,因此分离筛选是废旧塑料回收的重要环节。对小批量的废旧塑料,可采用人工分选法,但人工分选效率低,将使回收成本增加。国外开发了多种分离分选方法。

1.1 仪器识别与分离技术

意大利Govoni公司首先采用X光探测器与自动分类系统将PVC从相混塑料中分离出来[1]。美国塑料回收技术研究中心研制了X射线荧光光谱仪,可高度自动化的从硬质容器中分离出PVC容器。德国Refrakt公司则利用热源识别技术,通过加热在较低温度下将熔融的PVC从混合塑料中分离出来[1]。

近红外线具有识别有机材料的功能,采用近红外线技术[1]的光过滤器识别塑料的速度可达2000次/秒以上,常见塑料(PE、PP、PS、PVC、PET)可以明确的被区别开来,当混合塑料通过近红外光谱分析仪时,装置能自动分选出5种常见的塑料,速度可达到20~30片/min。

1.4 浮选分离法

日本一家材料研究所采用普通浸润剂,如木质素磺酸钠、丹宁酸、Aerosol OT和皂草甙等,成功地将PVC、PC(聚碳酸酯)、POM(聚甲醛)和PPE(聚苯醚)等塑料混合物分离开来[4]。

1.5 电分离技术[5]

用摩擦生电的方法分离混合塑料(如PAN、、PE、PVC和PA等)。其原理是两种不同的非导电材料摩擦时,它们通过电子得失获得相反的电荷,其中介电常数高的材料带正电荷,介电常数低的材料带负电荷。塑料回收混杂料在旋转锅中频繁接触而产生电荷,然后被送如另一只表面带电的锅中而被分离。

2 焚烧回收能量

聚乙烯与聚苯乙烯的燃烧热高达46000kJ/kg,超过燃料油的平均值44000 kJ/kg,聚氯乙烯的热值也高达18800 kJ/kg。废弃塑料燃烧速度快,灰分低,国外用之代替煤或油用于高炉喷吹或水泥回转窑。由于PVC燃烧会产生氯化氢,腐蚀锅炉和管道,并且废气中含有呋喃,二恶英等。美国开发了RDF技术(垃圾固体燃料),将废弃塑料与废纸,木屑、果壳等混合,既稀释了含氯的组分,而且便于储存运输。对于那些技术上不可能回收(如各种复合材料或合金混炼制品)和难以再生的废塑料可采用焚烧处理,回收热能。优点是处理数量大,成本低,效率高。弊端是产生有害气体,需要专门的焚烧炉,设备投资、损耗、维护、运转费用较高。

3 熔融再生技术

熔融再生是将废旧塑料加热熔融后重新塑化。根据原料性质,可分为简单再生和复合再生两种。简单再生主要回收树脂厂和塑料制品厂的边角废料以及那些易于挑选清洗的一次性消费品,如聚酯饮料瓶、食品包装袋等。回收后其性能与新料差不多。

复合再生的原料则是从不同渠道收集到的废弃塑料,有杂质多、品种复杂、形态多样、脏污等特点,因此再生加工程序比较繁杂,分离技术和筛选工作量大。一般来说,复合回收的塑料性质不稳定,易变脆,常被用来制备较低档次的产品。如建筑填料、垃圾袋、微孔凉鞋、雨衣及器械的包装材料等。

4 裂解回收燃料和化工原料

4.1 热裂解和催化裂解技术

由于裂解反应理论研究的不断深入[6-11],国内外对裂解技术的开发取得了许多进展。裂解技术因最终产品的不同分为两种:一种是回收化工原料(如乙烯、丙烯、苯乙烯等)[12],另一种是得到燃料(汽油、柴油、焦油等)。虽然都是将废旧塑料转化为低分子物质,但工艺路线不同。制取化工原料是在反应塔中加热废塑料,在沸腾床中达到分解温度(600~900℃),一般不产生二次污染,但技术要求高,成本也较高。裂解油化技术则通常有热裂解和催化裂解两种。

日本富士循环公司的将废旧塑料转化为汽油、煤油和柴油技术,采用ZSM-5催化剂,通过两台反应器进行转化反应将塑料裂解为燃料。每千克塑料可生成0.5L汽油、 0.5L煤油和柴油。美国Amoco公司开发了一种新工艺,可将废旧塑料在炼油厂中转变为基本化学品。经预处理的废旧塑料溶解于热的精炼油中,在高温催化裂化催化剂作用下分解为轻产品。由PE回收得LPG、脂肪族燃料;由PP回收得脂肪族燃料,由PS可得芳香族燃料。Yoshio Uemichi等人[13]研制了一种复合催化体系用于降解聚乙烯,催化剂为二氧化硅/氧化铝和HZSM-5沸石。实验表明,这种催化剂对选择性制取高质量汽油较有效,所得汽油产率为58.8%,辛烷值94。

国内李梅等[14]报道废旧塑料在反应温度350~420℃,反应时间2~4s,可得到MON73的汽油和SP-10的柴油,可连续化生产的工艺。李稳宏等[3]进行了废塑料降解工艺过程催化剂的研究。以PE、PS及PP为原料的催化裂化过程中,理想的催化剂是一种分子筛型催化剂,表面具有酸性,操作温度为360℃,液体收率90%以上,汽油辛烷值大于80。刘公召[15]研究开发了废塑料催化裂解一次转化成汽油、柴油的中试装置,可日产汽油柴油2t,能够实现汽油、柴油分离和排渣的连续化操作,裂解反应器具有传热效果好,生产能力大的特点。催化剂加入量1~3%,反应温度350~380℃,汽油和柴油的总收率可达到70%,由废聚乙烯、聚丙烯和聚苯乙烯制得的汽油辛烷值分别为72、77和86,柴油的凝固点为3,-11,-22℃,该工艺操作安全,无三废排放。袁兴中[16]针对釜底清渣和管道胶结的问题,研究了流化移动床反应釜催化裂解废塑料的技术。为实现安全、稳定、长周期连续生产,降低能耗和成本,提高产率和产品质量打下了基础。

将废料通过裂解制得化工原料和燃料,是资源回收和避免二次污染的重要途径。德国、美国、日本等都有大规模的工厂,我国在北京、西安、广州也建有小规模的废塑料油化厂,但是目前尚存在许多待解决的问题。由于废塑料导热性差,塑料受热产生高黏度融化物,不利于输送;废塑料中含有PVC导致HCl产生,腐蚀设备的同时使催化剂活性降低;碳残渣粘附于反应器壁,不易清除,影响连续操作;催化剂的使用寿命和活性较低,使生产成本高;生产中产生的油渣目前无较好的处理办法等等。国内关于热解油化的报道还有很多[43-54],但如何吸收已有的成果,攻克技术难点,是我们急需要做的工作。

4.2 超临界油化法

水的临界温度为374.3℃,临界压力为22.05Mpa。临界水具有常态下有机溶液的性能,能溶解有机物而不能溶解无机物,而且可与空气、氧气、氮气、二氧化碳等气体完全互溶。日本专利有用超临界水对废旧塑料(PE、PP、PS等)进行回收的报告,反应温度为400~600℃,反应压力25Mpa,反应时间在10min以下,可获得90%以上的油化收率。用超临界水进行废旧塑料降解的优点是很明显的:水做介质成本低廉;可避免热解时发生炭化现象;反应在密闭系统中进行,不会给环境带来新的污染;反应快速,生产效率高等。邱挺等[17]总结了超临界技术在废塑料回收利用中的进展。

4.3 气化技术

气化法的优点在于能将城市垃圾混合处理,无需分离塑料,但操作需要高于热分解法的高温(一般在900℃左右)。德国Espag公司的Schwaize Pumpe炼油厂每年可将1700t废塑料加工成城市煤气。RWE公司计划每年将22万吨褐煤、10万吨塑料垃圾和城镇石油加工厂产生的石油矿泥进行气化。德国Hoechst公司采用高温Winkler工艺将混合塑料气化,再转化成水煤气作为合成醇类的原料。

4.4 氢化裂解技术

德国Vebaeol公司组建了氢化裂解装置,使废塑料颗粒在15~30Mpa,470℃下氢解,生成一种合成油,其中链烷烃60%、环烷烃30%、芳香烃为1%。这种加工方法的能量有效利用率为88%,物质转化有效率为80%。

5 其他利用技术

废旧塑料还有着广泛的用途。美国得克萨斯州立大学采用黄砂、石子、液态PET和固化剂为原料制成混凝土,Bitlgosz [18] 将废塑料用作水泥原材料。解立平等[19]利用废旧塑料与木料、纸张等制备中孔活性炭,雷闫盈等[20报道应用废旧聚苯乙烯制涂料,李玲玲[21]报道塑料可变成木材。宋文祥[22]介绍了国外用HDPE作原料,通过一种特殊的方法,使长度不同的玻璃纤维在模具内沿着物料流向的轴向同向,从而生产高强度塑料枕木。蒲廷芳[23]等使用废旧聚乙烯制高附加值的聚乙烯蜡。李春生等[24]报道,聚苯乙烯与其他热塑性塑料相比,具有熔融粘度小,流动性大的特点,因此熔融后可以很好地浸润所接触的表面而起到良好的粘接作用。张争奇等[25]用废塑料改性沥青,将某一种或几种塑料按一定比例均匀溶于沥青中,使沥青的路用性能得到改善,从而提高沥青路面质量,延长路面寿命。

结束语

治理白色污染是个庞大的系统工程,需要各部门,各行业的共同努力,需要全社会在思想上和行动上的共同参与和支持,有赖于全民科技意识、环保意识的提高。政府部门在制定法规加强管理的同时,可把发展环保技术和环保产业作为刺激经济和扩大就业的重要渠道,使废塑料的收集、处理及回收利用产业化。目前我国回收和加工企业分散,规模小.

abs塑料是食品级的吗

不是食品级的。

ABS塑料在工业上应用广泛。ABS注射制品常用于制作壳体、箱体、零部件、玩具等。挤压制品主要是板材、棒材、管材等,可以进行热压、加工和造型。ABS无毒、不透水,但蒸汽渗透性稍差,吸水率低,室温浸泡在一年内吸水率不超过1%,物理性能不变。

对ABS树脂制品进行表面抛光,得到高光泽制品。塑料的强度是普通塑料的3-5倍。ABS树脂是一种耐水、无机盐、碱和酸,不溶于大多数醇类和烃类溶剂,而容易溶于醛、酮、酯和某些氯代烃中。

扩展资料:

abs塑料的物料性能:

1、综合性能好,抗冲击强度高,化学稳定性好,电气性能好。

2、与372有机玻璃的熔接性良好,制成双色塑件,且可表面镀铬,喷漆处理。

3、高抗冲击性、高耐热性、阻燃性、增强透明级。

4、流动性比HIPS差一点,比PMMA、PC等好,柔韧性好。

5、适用于一般机械零件、耐磨件、传动件、通讯件的制造。

百度百科-ABS塑料

百度百科-ABS材料

如何解聚回收聚酯材料

废塑料的回收和再生利用

废塑料的回收:

废塑料的回收是进行再利用的基础。回收的难度在于废塑料数量大、分布广、品种多、体积大,许多废塑料与其他城市垃圾混在 一起,给回收造成很大困难。

目前,国外在废塑料回收方面已积累了不少经验,他们把废塑料的回收作为一项系统工程,政府、企业、居民共同参与。德国于1993年开始实施包装容器回收再利用,1997年回收再 利用废塑料达到60万吨,是当年80万吨消费量的75%。 目 前,德国在全国设立300多个包装容器回收、分类网点,各网 点统一将塑料制品分为瓶、薄膜、杯、PS发泡制品及其他制 品,并有统一颜色标志。日本树脂再生利用成功的秘诀就在于 建立了回收循环体制。回收循环管理体制的核心就是尽量减少 回收环节,各厂家在建立销售网点的同时也要考虑建立回收网 点。厂家负起回收利用自家生产的产品废旧物品的责任,在回 收自家生产的废旧物品时,原标准零部件及其材料性能就容易 把握,可以充分有效地再生利用,能够确保再生产品的性能。 同时,还可以减少热回收,减少烦琐程序和环境污染。由于产 品的模块化,使再生利用部分的技术研究开发方向更加明确。

为进一步利用,回收的废塑料往往进行分离,采用的主要分离 技术有密度分离、溶解分离、过滤分离、静电分离和浮游分离等, 见图2.1。日本塑料处理促进协会的水浮选分离装置一次分离率就 可达到99.9%以上,美国DOW化学公司也开发了类似的分离技 术,以液态碳氢化合物取代水分离混合废塑料,取得了更佳的效 果。美国凯洛格公司与伦塞勒综合技术学院联合开发出溶剂性分离 回收技术,不需人工分拣,即可使混杂的废旧塑料得到分离。该法 是将切碎的废旧塑料加入某种溶剂中,在不同温度下溶剂能有选择

地溶解不同的聚合物而将它们分离。应用的溶剂以二甲苯为最佳, 操作温度也不太高。 对一些新的分离技术如电磁快速加热法、反应性共混法等也有 不少报道。电磁快速加热法可回收分离金属—聚合物组件,反应性 共混法能实现对带涂料层废弃保险杠的回收分离。另外,国外已开 发出计算机自动分选系统,实现了分选过程的连续自动化。瑞士的 Bueher公司用卤素灯为强光源照射下,经过4种过滤器的识别,由计算机可分离出PE、PP、PS、PVC和PET废塑料,生产能力为It/h。

直接使用或与其他聚合物混制成聚合物合金。这些产品可用于制造 6生塑料制品、塑料填充剂、过滤材料、阻隔材料、涂料、建筑材 料和粘合剂等。这是一种简单可行的方法,实现了重复使用,可分 为熔融再生和改性再生两类。

(1)熔融再生

该法是将废塑料加热熔融后重新塑化。根据原料性质,可分为简单再生和复合再生两种。

简单再生已被广泛采用,主要回收树脂生产厂和塑料制品厂生 产过程中产生的边角废料,也可以包括那些易于清洗、挑选的一次 性使用废弃品。这部分废旧料的特点是比较干净、成分比较单一,采用简单的工艺和装备即可得到性质良好的再生塑料,其性能与新料相差不多。现在塑料废弃物品约有20%采用这种回收利用方法, 现阶段大多数塑料回收厂是属于这一类的。

复合再生所用的废塑料是从不同渠道收集到的,杂质较多,具 有多样化、混杂性、污脏等特点。由于各种塑料的物化特性差异及 不相容性,它们的混合物不适合直接加工,在再生之前必须进行不 同种类的分离,因此回收再生工艺比较繁杂,国际上已采用的先进 的分离设备可以系统地分选出不同的材料,但设备一次性投资较 高。一般来说,复合再生塑料的性质不稳定,易变脆,故常被用来 制备较低档次的产品,如建筑填料、垃圾袋、微孔凉鞋、雨衣及器 械的包装材料等。

目前,我国大连、成都、重庆、郑州、沈阳、青岛、株洲、邯 郸、保定、张家口、桂林以及北京、上海等地分别由日本、德国引 进20多套(台)熔融法再生加工利用废塑料的装置,主要用于生 产建材、再生塑料制品、土木材料、涂料、塑料填充剂等。

(2)改性再生

是指通过化学或机械方法对废塑料进行改性。改性后的再生制品力学性能得到改善,可以做档次较高的制品。

日本宝冢市工业技术研究开发试验所发明了一种方法,可将废纸和废聚乙烯加工成合成木材,这种合成木材可以和天然木材一样 加工,质地也和天然木材一样好。澳大利亚克莱顿聚合物合作研究中心研究出一种用聚乙烯薄膜边角料和废纸纤维生产建筑业用木材 替代物的生产工艺,该加工过程系在一台双螺杆挤出机内进行,工 艺温度低于200℃,能避免纤维的降解。用该方法生产的新闻纸/ 聚乙烯复合材料的外观、密度和机械性能与硬纤维板相似,可用标准工具进行切割、成型,在钉钉子时的防裂性也很好,防水性能比 硬纤维板要好。西堀贞夫的“爱因木”技术以干态研磨清洗达到塑 料废弃物再资源化,使用再生原料PE、PP、PVC、ABS等混合废 弃木屑,生产木屑含量超过50%以上的新型木板。爱因木技术的 问世引起了世界各国,特别是发达国家的关注并产生了强烈反响。

在化学添加剂方面,汽巴—嘉基公司生产出一种含抗氧剂、共 稳定剂和其他活性、非活性添加剂的混合助剂,可使回收材料性能 基本恢复到原有水平;荷兰也有人开发出一种新型化学增容剂,能 将包含不同聚合物的回收塑料键合在一起。美国报道采用固体剪切 粉碎工艺(Solid State Shear Pulverization,S3P)进行机械加工,无需加热和熔融便可对树脂进行分子水平上的剪切,形成互容的共 混物,共混物大部分由HDPE和LLDPE组成,极限拉伸强度和挠 曲模量可与HDPE和LLDPE纯料相媲美。近两年出现的固相剪切 挤出法、反应性共混法、多层夹心注塑技术以及反应挤塑法则使一 些难以回收的废塑料的再生利用成为可能。

(3)木粉填充改性废塑料

木粉填充改性废塑料是一种全新的绿色环保塑木材料,其加工 方法也是物理改性再生方法。由于近几年来国内外对该方面的研究 较多,发展较快,并且已有商品化产品出现,塑木材料及其相关技术的发展已成为一种趋势

木粉与废旧塑料复合材料的开发与研究不但可以提供充分利用 自然资源的机会,而且也可以减轻由于废旧塑料而引起的环境污 染,因此,这种木塑复合材料是一种节约能源、保护环境的绿色环保材料。其应用范围很广,主要应用在建材、汽车工业、货物的包 装运输、装饰材料及日常生活用具等方面,有广阔的发展前景。从国内外专利调研中也可看出这点。木粉作为塑料的一种有机填料,具有许多其他的无机填料所无法比拟的优良性能:来源广泛、价格 低廉、密度低、绝缘性好、对加工设备磨损小。但它并没有像无机填料那样得到广泛应用,原因主要有以下两点,与基体树脂的相容性差;在熔融的热塑性塑料中分散效果差,造成流动性差和挤出成 型、加工困难。

①木粉的处理:木纤维材料优选为炊木材料,如白杨木、雪 松锯屑等,这种木纤维有规则的形状和纵横比,使用前需经处理干 净,尽量干燥,然后加工成类似锯屑规格的木粉。各专利对木粉的规格、大小都作了相应规定:长度优选为1—10mm,厚度0.3—1.5mm,纵横比2.5—6.0,吸湿率小于12%(按重量计)。

②对塑木复合物的加工要求:复合物颗粒挤出成材时,若采用的是无通风设备的挤出工艺,颗粒应尽可能干燥,含水量应在 0.01%~5%(质量分数)之间,最好小于3.5%。有通风设备的,含水量小于8%是可以接受的。否则,挤出材料会产生裂纹或其他表面缺陷。

对复合物颗粒的截面形状作了研究,认为有规则几何形状的截面更有利,包括三角形、正方形、矩形、六边形、椭圆形、圆形等’,优选为有近似圆形或椭圆截面的规则圆柱体。

在挤出工艺中木纤维更宜沿挤出方向取向,这种定向能使相邻平行的木纤维与包覆在定向木纤维上的高分子相互交叠,从而能改善材料的物理性能。通常取向度为20%,优选30%。这种结构的材料有着充分增强的强度、拉伸模量,适宜于制作门窗。

研究了木粉与废塑料的混合比例,优选条件为塑料45%(质量分数,后同)、木粉55%,还发现从塑料40%、木纤维60%到 塑料60%、木纤维40%的混合比例都可生产合用的产品。混合物组分的选定视终产品的特性、塑料和木纤维的类型而定。

③相容性的改善:由于木粉中主要成分是纤维素,纤维素中含有大量的羟基,这些羟基形成分子间氢键或分子内氢键,使木粉具有吸水性,吸湿率可达8%一12%,且极性很强,而热塑性塑料多数为非极性的,具有疏水性,所以两者之间的相容性较差,界面的粘结力很小。使用适当的添加剂改性聚合物和木粉的表面,可以提高木粉与树脂之间的界面亲和能力,改性的木粉填料具有增强的性质,能够很好地传递填料与树脂之间的应力,从而达到增强复合材料强度的作用。因此,要得到性能优良、符合条件的塑木复合材 料,首先要解决的问题是相容性的问题。 ·

相容性问题主要依靠加入各种添加剂解决。

偶联剂法:偶联剂可以提高无机填料及无机纤维与基体树脂之间的相容性,同时也可改善木粉与聚合物之间的界面状况。硅烷偶联剂和钛酸酯偶联剂是应用最广泛的两类偶联剂,实验表明,这两种偶联剂都能改善填料与树脂的相容性。

相容剂法:加入相容剂法是最简单而且很有效的方法。据报道,合适的相容剂有马来酸酐等接枝的植物纤维或马来酸酐改性的聚烯烃树脂、丙烯酸酯共聚物、乙烯丙烯酸共聚物。这些相容剂中大部分含有羟基或酐基,能够与木粉中的羟基发生酯化反应,降低木粉的极性和吸湿性,故与树脂有很好的相容性。

④添加剂的用量对复合材料性能的影响:偶联剂的用量与填料的活化效果并非成正比关系,当添加剂含量为1%时,材料的拉伸强度和拉伸模量最好,随着添加剂用量的增加,材料的性能反而下降。因此添加剂的用量不能太多,否则,既影响性能,又造成不必要的浪费。

⑤流动性能的改善:对于挤出成型加工来说,要求所加工的物料有一定的流动性。大多数情况下填充塑料都需要经过熔融、受力、变形后,经冷却定型制成各种制品,因此木粉填料的加人对熔体流变性能的影响是必须加以研究的。其中最重要的是对熔体粘度的影响。

随着木粉含量的增加,聚合物熔体粘度升高,这与木粉在基体树脂中的分散状况有关。木粉颗粒在基体中是以某种聚集状态的形式存在,呈聚集态的木粉对填充体系流动性能的影响是不利的,可加入适量的硬脂酸来降低木粉颗粒的集聚数量,改善成团现象,使其在基体树脂中充分分散。此外,木塑复合材料在熔融状态时属于假塑性流体,随着剪切速率的增加,表观粘度下降。所以为了使填充体系具有良好的加工流动性能,应当尽可能采用较高的剪切应力,以降低填充体系的剪切粘度,使之适合于挤出成型加工。

⑥加工条件的改善:挤出成型、热压成型、注射成型是加工 塑木复合材料的主要成型方法。由于挤出成型加工周期短、效率 高、成型工艺简单,因此挤出成型方法是一种较佳的选择方案。

单螺杆挤出机可完成物料的塑化和输送任务。由于木粉的填充 使聚合物熔体粘度增大,增加了挤出难度,所以,用于木粉填充改 性的单螺杆挤出机必须采用特殊设计的螺杆,螺杆应具有较强的混炼塑化能力。

由于木粉结构蓬松,不易对挤出机螺杆喂料,在挤出之前应对物料进行混炼制粒。由于木粉具有吸水性,制粒前应对木粉进行干燥处理,干燥温度为150℃左右,时间以3h为宜,如果干燥不充分,制品中会有气泡产生,致使材料的机械强度下降。加工温度的控制也十分重要,温度过高,木粉由于热作用会发生炭化现象,从而影响材料表观颜色。因此,在加工过程中应适当控制加工温度。

化学方法:

是指通过化学反应使废旧塑料转化成低分子化合物或低聚物。 这些技术可用于以废旧塑料为原料生产燃料油、燃气、聚合物单体 及石化、化工原料。

从技术角度来说,化学方法主要有高温裂解、催化裂解、加氢裂解、超临界流体法以及溶剂解。热裂解法生成沸点范围宽的烃类,回收利用价值低。催化裂解由于有催化剂存在,反应温度可降低几十度,产物分布相对易于控制,能得到晶位高的汽油。超临界流体法因其环保、经济、分解速度快、转化率高等特点,正成为目前的研究热点,既适用于废塑料油化,又可用于缩聚物溶剂解。溶剂解主要用于缩聚型废塑料的解聚回

收单体。

从用途来讲,化学方法因终产品的不同又可分为两种,一种是制取燃料(汽油、煤油、柴油、液化气等),另一种是制取基本化工原料、单体。

(1)制取燃料(油、气)的油化技术

国外早在20世纪70年代石袖危机时期已开始开发油化技术,

裂化,lkg废塑料产油最多可达iL。这种技术不使用搅拌装置,只适合于聚烯烃,还不能用于含卤类塑料。

APME(欧洲塑料生产者协会)认为,回收工艺要有生命力,必须能够接受组成广泛的混合塑料。目前工业界已对富含PVC (高至60%)的废塑料进行了实验室工程研究和初步的中试,但尚未对示范装置的建设提供最佳工艺条件。

日本在2000年4月对废塑料全面实施“包装容器再生法”后,为解决混杂塑料的油化问题,日本废塑料再生促进协会及废物研究 财团在政府的资助下,开发成功一般混合废塑料的油化技术。其工 艺过程包括前处理工序、脱氯工序、热分解。为了改善油品质量, 加入催化剂进行改质。

三菱重工、东芝、新日铁等日本公司均已先后进行了中试或工业化试验,可产出汽油、柴油、重油等油晶,技术已过关,但经济上尚未过关。为此,有关公司正通过改进工艺以大幅度降低成本,突出的为东北电力会同三菱重工利用超临界水进行废塑料油化试验的结果,反应时间由过去的2h大幅缩短至2min后,油品的回收率仍保持在80%以上的高水平,从而有利于成本的降低。考虑到油价的上涨将有利于提高经济效益,目前正在进行的0.5t/h的工业化试验,预计成功后将较快实用化。

(2)制取基本化学原料、单体回收的技术:

混合废塑料热分解制得液体碳氢化合物,超高温气化制得水煤气,都可用作化学原料。德国Hoechst公司、Rule公司、BASF公司、日本关西电力、三菱重工近几年均开发了利用废塑料超高温气化制合成气,然后制甲醇等化学原料的技术,并已工业化生产。

近年来废塑料单体回收技术日益受到重视,并逐渐成为主流方向,其工业应用亦在研究中。1998年5月在德国慕尼黑举行的第14届国际分析应用裂解学术会议上,出现了有关高分子废弃物再生利用发展的新趋向。从本次会议发表的论文看,对于高分子材料的“白色污染”问题,国际上在基本解决了高分子废弃物经裂解制备燃料的研究和工业化之后,已趋向将高分 子废弃物通过有效的催化—裂解方法转化为高分子合成原料的新

阶段。目前研究水平已达到单体回收率聚烯烃为90%,聚丙烯酸酯为97%,氟塑料为92%,聚苯乙烯为75%,尼龙、合成橡胶为80%等。这些结果的工业应用亦在研究中,它对环境及资源利用将会产生巨大效益。

美国BattelleMemorial研究所(美国专利US5136117)已成功开发出从LDPE、HDPE、PS、PVC等混合废塑料中回收乙烯单体技术,回收率58%(质量分数),成本为3.3美分/kg,目标是两年后实现工业化。日本总代理商——三菱商社已引进该技术并商业化开发,已建成流量20L/h的连续反应装置。

溶剂解(包括水解和醇解)主要用于缩聚高分子材料的解聚回收单体,适用于单一品种并经严格预处理的废塑料。目前主要用于处理聚氨酯、热塑性聚酯和聚酰胺等极性废塑料。例如利用聚氨酯泡沫塑料水解法制聚酯和二胺,聚氨酯软、硬制品醇解法制多元醇,废旧PET解聚制粗对苯二甲酸和乙二醇等。

另外,近年来超临界流体法也越来越多地应用于解聚缩聚型高分子材料,回收其单体,效果远优于通常的溶剂解。日本T.Sako等人利用超临界流体分解回收废旧聚酯(PET)、玻璃纤维增强塑料(FRP)和聚酰胺/聚乙烯复合膜。他们采用超临界甲醇回收PET的优点是PET分解速度快,不需要催化剂,可以实现几乎100%的单体回收。他们还用亚临界水回收处理PA6/PE复合膜,使PA6水解成单体‘·己内酰胺,回收率大于70%一80%。

热能再生:

塑料燃烧可释放大量的热量,聚乙烯和聚苯乙烯的热值高达46000kJ/kg,超过燃料油平均44000kJ/kg的热值。燃烧试验表明,废塑料完全具备作为燃料的基本性质。它与煤粉、重油的燃烧对比试验详见表2.2。从表2.2中可看出,废塑料发热量与煤和石油相 当,且不含硫。此外由于含灰分少,燃烧速度快。

因此,国外将废塑料用于高炉喷吹代替煤、油和焦,用于水泥回转窑代替煤烧制水泥,以及制成垃圾固形燃料(RDF)用于发电,收到了很好的效果。

(1)燃料化:垃圾固形燃料RDF

日本积极推广用废塑料制垃圾固形燃料(RDF)。RDF技术原 由美国开发,日本近年来鉴于垃圾填埋场不足、焚烧炉处理含氯废 塑料时造成HCI对锅炉的腐蚀和尾气产生二D8英污染环境的问题,利用废塑料发热值高的特点混配各种可燃垃圾制成发热量20933kJ/kg和粒度均匀的RDF后,既使氯得到稀释,同时亦便于贮存、运输和供其他锅炉、工业窑炉燃用代煤。垃圾固形燃料发电最早在美国应用,并已有RDF发电站37处,占垃圾发电站的21.6%。日本结合大修将一些小垃圾焚烧站改为RDF生产站,以便于集中后进行连续高效规模发电,使垃圾发电站的蒸汽参数由<30012提高到45012左右,发电效率由原来的15%提高到20%~25%。秩父小野田水泥公司已在回转窑上试烧RDF成功,不仅代替了燃煤,而且灰分也成为水泥的有用组分,效果比用于发

电更好。目前日本各水泥厂正积极推广。

(2)高炉喷吹、水泥回转窑喷吹

高炉喷吹废塑料技术是利用废塑料的高热值,将废塑料作为原料制成适宜粒度喷人高炉,来取代焦炭或煤粉的一项处理废塑料的新方法。国外高炉喷吹废塑料应用表明,废塑料的利用率达80%. 排放量为焚烧量的0.1%~1.0%,仅产生较少的有害气体,处理费用较低。高炉喷吹废塑料技术为废塑料的综合利用和治理“白色污染”开辟了一条新途径,也为冶金企业节能增效提供了一种新手段。

德国的不莱梅钢铁公司于1995年首先在其2号高炉(容积2688m3)上喷吹废塑料,并建立了一套70kt/a的喷吹设备,随后克虏伯/赫施钢铁公司也建立了一套90kt/a的喷吹设备,德国其他的钢铁公司也准备采用此项技术。日本NNK公司1996年在其京滨厂1 号高炉(容积4093m3)上喷吹废塑料,计划处理废塑料30kt/a,它

还打算向日本其他厂转让此项技术。日本环保界和舆论界对此寄予厚望,日钢铁联盟已将此纳入2010年节能规划,要求年喷吹100万吨以上,相当于钢铁工业能耗的2%,前途大有可为。

另外,日本水泥回转窑喷吹废塑料试验成功。德山公司水泥厂在长期燃烧废轮胎的基础上,于1996年在废塑料处理促进协会的配合下成功进行了回转窑喷吹废塑料试验。

发酵法

有资料报道,废聚乙烯可以通过氧化发酵和热解发酵两种方法转化成微生物蛋白。该法为非主流方法,目前不常用。

相 关 信 息 收藏该信息 打印 关闭窗口 向朋友推荐

DTY、DT等化学纤维产品含义简解 . 2006-11- 10

关于大化纤、中化纤、小化纤 . 2006-11- 10

水性丙烯酸酯—聚氨酯粘合剂项目通过专家鉴定 . 2006-11- 9

e--氨基己酸的磷酸二氢盐在异戊二烯橡胶中的作用 .